
Generating Code Review Documentation for
Auto-Generated Mission-Critical Software

Ewen Denney
SGT / NASA Ames

Moffett Field, CA 94035
Ewen.W.Denney@nasa.gov

Bernd Fischer
School of Electronics and Computer Science

University of Southampton, England
B.Fischer@ecs.soton.ac.uk

Abstract

Model-based design and automated code generation are
increasingly used at NASA to produce actual flight code,
particularly in the Guidance, Navigation, and Control do-
main. However, since code generators are typically not
qualified, there is no guarantee that their output is correct,
and consequently auto-generated code still needs to be fully
tested and certified. We have thus developed AUTOCERT, a
generator-independent plug-in that supports the certification
of auto-generated code. AUTOCERT takes a set of mission
safety requirements, and formally verifies that the auto-
generated code satisfies these requirements. It generates
a natural language report that explains why and how the
code complies with the specified requirements. The report is
hyper-linked to both the program and the verification con-
ditions and thus provides a high-level structured argument
containing tracing information for use in code reviews.

1. Introduction

Model-based development and automated code generation
are increasingly used by NASA missions (e.g., Constella-
tion uses MathWorks’ Real-Time Workshop), not only for
simulation and prototyping, but also for actual flight code
generation, in particular in the Guidance, Navigation, and
Control (GN&C) domain. However, since code generators
are typically not qualified, there is no guarantee that their
output is correct, and consequently the generated code still
needs to be fully tested and certified. The V&V situation
thus remains unsatisfactory:

• Code reviews are still necessary for mission-critical
applications, but the generated code is often difficult
to understand, and requires reviewers to match subtle
details of textbook formulas and algorithms to model
and/or code.

• Common modeling and programming languages do
not allow important requirements to be represented
explicitly (e.g., units, coordinate frames, quaternion
handedness); consequently, such requirements are gen-

erally expressed informally and the generated code is
not traced back to these requirements.

• Writing documentation is tedious and therefore often
not completed or kept up to date.

In this paper, we describe a new tool that generates human-
readable and traceable safety documentation from the results
of an automated analysis of auto-generated code. It is based
on the AUTOCERT code analysis tool [1], which takes a set
of mission safety requirements, and formally verifies that the
code satisfies these requirements. It can verify both simple
execution-safety requirements (e.g., variable initialization
before use, array out of bounds, etc.), as well as domain-
and mission-specific requirements such as the consistent use
of Euler angle sequences and coordinate frames. The results
of the code analysis are used to generate a natural language
report that explains why and how the code complies with
the specified requirements. The report makes the following
information explicit: assumptions on the environment (e.g.,
the physical units and constraints on input signals) and
the intermediate variables in the computation (representing
intermediate signals in the model), the algorithms, data
structures, and conventions (e.g., quaternion handedness)
used by the code generator to implement the model, the
dependencies between variables, and the chain of reasoning
which allows the requirements to be concluded from the
assumptions. The analysis tool matches candidate algorithms
for various mathematical operations against the code, and
then uses theorem proving to check that they really are
correct implementations. The report is hyper-linked to both
the program and the verification conditions, and gives trace-
ability between verification artifacts, documentation, and
code. In order to construct a justification that the code meets
its requirements, a diligent code reviewer must “rediscover”
all the information which is automatically generated by
AUTOCERT, so the high-level structured argument provided
by our tool can result in substantial savings in effort.

Our approach, both to the formal verification and to the
construction of the review reports, is independent of the
particular generator used, and we have applied it to code
generated by several different in-house and commercial code



generators, including MathWorks’ Real-Time Workshop. In
particular, we have applied our tool to several subsystems of
the navigation software currently under development for the
Constellation program, and used it to generate review reports
for mission-specific requirements such as the consistent use
of Euler angle sequences and coordinate frames.

2. Background

2.1. Automated Code Generation

Model-based design and automated code generation (or
autocoding) promise many benefits, including higher produc-
tivity, reduced turn-around times, increased portability, and
elimination of manual coding errors [2], [3]. There are now
numerous successful applications of both in-house custom
generators for specific projects, and generic commercial
generators. One of the most popular code generators within
NASA is MathWorks’ Real-Time Workshop (with the add-
on product Embedded Coder), an automatic code generator
that translates Simulink/Stateflow models into embeddable
(and embedded) C code [4]. By some estimates, 50% of all
NASA projects now use Simulink and Real-Time Workshop
for at least some of their code development. Code generators
have traditionally been used for rapid prototyping and design
exploration, or the generation of certain kinds of code (user
interfaces, stubs, header files etc.), but there is a clear
trend now to move beyond simulation and prototyping to
the generation of production flight code, particularly in the
GN&C domain. Indeed, the prime contractor for the Orion
Spacecraft (NASA’s Crew Exploration Vehicle) is making
extensive use of code generators for the development of the
flight software.

2.2. Autocode Assurance

The main challenge in the adoption of code generators in
safety-critical domains is the assurance of the generated
code. Ideally, the code generator, itself, should be qualified
or even formally verified, but this is rarely done: the direct
V&V of code generators is generally too laborious and
complicated due to their complex nature, while testing the
generator itself can require detailed knowledge of the (often
proprietary) transformations it applies [5], [6]. Moreover,
the qualification is only specific to the use of the generator
within a given project, and needs to be repeated for every
project and for every version of the tool. Even worse, if
the generator is upgraded during a project, any qualification
effort which has been carried out on the previous working
version is now lost, the code must be re-certified, and the
entire tool-chain must now essentially be upgraded. This can
offset many of the advantages of using a generator. Also,
even if a code generator is generally trusted, it often re-
quires user-specific modifications and configurations, which

necessitate that V&V be carried out on the generated code
[7]. In summary, the generated code still needs to be fully
tested and certified.

Advocates of the model-driven development paradigm
claim that by only needing to maintain models, and not
code, the overall complexity of software development is
reduced. While it is undoubtedly true that some of burden
of verification can be shifted from code to model, there
are additional concerns and, indeed, more artifacts in a
model-based development process than just models. Users
not only need to be sure that the code implements the
model, but also that the code generator is correctly used
and configured, that the target adaptations are correct, that
the generated code meets high-level safety requirements,
that it is integrated with legacy code, and so on. There can
also be concerns with the understandability of the generated
code. Some explanation of why and how the code satisfies
the requirements, therefore, helps the larger certification
process. Automated support for V&V that is integrated
with the generator can address some of these complexity
concerns. Furthermore, certification requires more than black
box verification of selected properties, otherwise trust in one
tool (the generator) is simply replaced with trust in another
(the verifier).

Automated code generation, therefore, presents a number
of challenges to software processes and, in particular, to
V&V, and this leads to risk. The documentation tool we
describe here mitigates some of that risk.

2.3. Autocode Verification

In contrast to approaches based on directly qualifying the
generator or on testing of the generated code, we have
instead developed an independent autocode analysis tool
which is nevertheless closely integrated with the code gen-
erator. Specifically, AUTOCERT supports certification by
formally verifying that the generated code complies with a
range of mathematically specified requirements and is free
of certain safety violations.

However, in an independent V&V (IV&V) context, we
must consider the larger picture of certification, of which
formal verification is a part, and therefore produce assurance
evidence which can be checked either by machines (during
proof checking) or by humans (during code reviews). Hence,
the tool constructs an independently verifiable certificate,
and explains its analysis in a textual form suitable for code
reviews.

If the tool does not detect any bugs, then it is guaranteed
that the auto-generated source code meets the stated require-
ments. Moreover, the time taken to review and certify the
auto-generated code by hand, could be compared with with
the time taken to do it with support from AUTOCERT.



2.3.1. Code Analysis. In order to certify a system, AUTO-
CERT is given a set of assumptions and requirements.
Assumptions are typically constraints on input signals to the
system, while requirements are constraints on output signals.

The tool then parses, analyzes, and verifies the generated
source code with respect to the specified requirements. Note
that only the code is analyzed, rather than the model or the
generation process. In other words, the code generator is
treated as a black box.

The key technical idea of our approach is to exploit
the idiomatic nature of auto-generated code in order to
automatically infer logical annotations, that is, assertions of
program properties at key locations in the code. Annotations
are crucial in order to allow the automatic formal verification
of the requirements without requiring access to the internals
of the code generator, as well as making a precise analysis
possible. The annotations are used to generate verification
conditions (VCs), which are then proved by an automated
theorem prover. We omit further technical details of the
verification process (see [15], [8]).

During the course of verification, AUTOCERT records
various facts, such as the locations of variable definitions and
uses, which are later used to generate the review document
(Section 4.2).

2.3.2. Customization. AUTOCERT is independent of the
particular generator used, and need only be customized to a
domain via an appropriate set of annotation schemas, which
encapsulate certification cases for matching code fragments.
We omit details of the schema language here (see [9]),
but note that is is based on a generic pattern language for
describing code idioms. Schemas also contain actions which
construct the annotations needed to certify a code fragment,
and can record other information associated with the code,
such as the mathematical conventions it follows. A schema
also has a number of different textual descriptions which
can be parametrized by the variables in the pattern. This is
used during the document generation process.

2.3.3. Certification Browser. The user can view the results
of the verification via a certification browser that is inte-
grated with Matlab. This displays the generated code along
with the VCs and the review document (to be described
below).

By selecting a line in the generated code, the user can
see the list of VCs that are dependent on that line. The
user can also select a VC and navigate to its source in
the code. This action highlights the lines in the RTW-
generated code which contribute to the chosen VC (that
is, they had either an annotation from which the given VC
was generated or contributed a safety obligation). A click
on the source link associated with each VC prompts the
certification browser to highlight all affected lines of code,
and display the annotations for the selected VC in the RTW-

generated code. Conversely, a click on the line number link
at each line of code or on an annotation link will display all
VCs associated with that line or annotation. A further click
on the verification condition link itself displays the formula
which can then be interpreted in the context of the relevant
program fragments.

3. Mathematical Domain

We will illustrate the review document generation using
excerpts that explain the verification of several requirements
for an attitude module of a spacecraft GN&C system. In
addition to being a necessary component of every space-
craft, the GN&C domain is challenging from a verification
perspective due to its complex and mathematical nature.

We just describe the model at the top level sufficient
to understand typical requirements. The attitude sub-system
takes several input signals, representing various physical
quantities, and computes output signals representing other
quantities, such as Mach number, angular velocity, position
in the Earth-Centered Inertial frame, and so on. Signals
are generally represented as floats or quaternions and have
an associated physical unit and/or frame of reference. At
the model level, the transformations of coordinate frames
are usually done by converting quaternions to direction
cosine matrices (DCMs), applying some matrix algebra, and
then converting back to quaternions. Other computations are
defined in terms of the relevant physical equations. Units and
frames are usually not explicit in the model, and instead are
expressed informally in comments and identifier names.

At the code level, equations and transformations are
expressed in terms of the usual loops, function calls, and
sequences of assignments. Depending on the optimization
settings of the generator, the resemblance to the model
can be tenuous. Variables can be renamed and reused, and
structures can be merged (e.g., via loop fusion) or split (e.g.,
to carry out common sub-expression elimination).

The challenge for AUTOCERT is to disentangle this com-
plexity and provide a comprehensible explanation in terms
of concepts from the model and domain (e.g., [10], [11],
[12]). In effect, what the tool must do is reverse engineer
the code.

In practice, this semantic abstraction can be seen as going
up through several levels before reaching the high-level
mathematical concepts appropriate for explanation. Fig.1
shows the relationships between these levels.

At the lowest level is the code itself along with primitive
arithmetic operators. This is, of course, the level at which
V&V is actually carried out (we do not consider object code
here). The purpose of comments in the code (and model) is
generally to informally explain the code at a more abstract
level, so AUTOCERT can be seen as formally checking these
implicit conventions. At the next level are mathematical op-
erations, such as matrix multiplication and transpose, while



Figure 1. Levels of Abstraction

low-level datatypes such as floats correspond, at the more
abstract level, to physical values of a given unit. These, in
turn, are used to represent navigational information in terms
of quaternions, DCMs, Euler angles, and so in, in various
coordinate systems. This is the level at which we explain the
verification. There is a further level of abstraction, at which
domain experts think, namely the principles of guidance,
navigation, and control, itself, but explanation at this level
is currently beyond our scope.

4. Generating Review Documents

4.1. Document Purpose and Assumptions

The generated safety documents serve as structured reading
guides for the code and the verification artifacts, showing
why and how the code complies with the specified require-
ments. However, the documents do not simply associate
source code locations with verification conditions; in fact,
we delegate this to the existing complementary code browser
[1] sketched in Section 2.3.3. Instead, the documents call out
the high-level operations and conventions used by the gen-
erated code (which might be different from those originally
specified in the model from which the code was generated,
due to optimizations) and the relevant structures in the code
(in particular, the paths between the locations where the
requirements manifest themselves and where they are estab-
lished) and associates the verification conditions with these.
This provides a “natural” high-level grouping mechanism for
the verification conditions, which helps reviewers to focus
their attention on the artifacts and locations that are relevant
for each safety requirement, and thus conforms to the usually
requirements-driven safety certification process.

The document construction is based on the assumption
that all relevant information can be derived in the verification
phase, in particular by the annotation inference mechanism.
The document’s overall structure (see Section 4.3) reflects
the way the annotation inference has analyzed the pro-
gram, starting with the variables occurring in the original

requirements. The applied schemas implicitly also indicate
which high-level conventions and operations are used by
the code (see Section 4.4), and a semantic labeling of the
verification conditions [13] allows us to associate only the
small number of VCs with the paths that actually contribute
to demonstrating how a given requirement holds along a
path, as opposed to those that are just coincidentally related
to it (see Section 4.5).

4.2. Technical Approach

The generated documents are heavily cross-referenced
and hyper-linked, both internally and externally, so that
HTML/JavaScript is a suitable technical platform. Cross-
linking follows not only from the hierarchical document
structure (e.g., the links from the requirements summary to
the individual requirements sections, see Fig. 2), but also
from the traceability links recovered by the analysis phase,
primarily the chains of implications from the properties of
one variable to the properties of one or more “dependent”
variables. Hyper-links are mostly traceability links to other
artifacts such as external documents, models, code, or veri-
fication conditions that were constructed by the analysis and
verification phases. Further hyper-links can be introduced by
the concept lexicalization; these usually refer to to external
documents such as RTW documentation or Wikipedia pages.

The actual document generation process is relatively
lightweight and does not require the application of deep nat-
ural language generation (NLG) technology [14]. Currently,
the document’s overall structure is fixed, so that content
determination and discourse planning are not necessary.
Concept lexicalization, however, relies on text fragments
provided by the annotation schemas (for the mathematical
and data structures and the operations) or stored in a fact
base (for the mathematical operations used in assumptions
and other formulas). This step can thus be customized easily.

The document generator contains canned text for the
remaining fixed parts of the document, and constructs some
additional “glue text”, to improve legibility. The combined
text is post-processed to ensure that the document is syn-
tactically correct. The generator currently produces directly
HTML, but changing the final output to, e.g., XML to
simplify layout and rendering changes is relatively straight-
forward.

4.3. Document Structure

The document consists of a general introduction and a
section for each certified requirement. The introduction
contains a natural language representation of the formalized
requirements and certification assumptions; see Fig. 2 for an



This document describes the results of the safety certification for
the code generated from the model Attitude. It consists of sections
establishing the following safety requirements:

• rty_7 is a value representing Mach at MSL altitude
• rty_2 is a value representing position in the ECI frame
• rty_1 is a value representing velocity in the ECI frame
• VelocityCompNed is a value representing velocity in the

NED frame
The assumptions for the certification are that

• BitwiseOperator_c is positive
• VelocityNED_e is a value representing velocity in the

NED frame
• DCMtoQuat_1 is a quaternion representing a transformation

from the NED frame to the body fixed frame (Body)
• AtmScaleHt_MslAlt represents the altitude entries in a

lookup table
• SpeedOfSound_Lookup represents the speed of sound

entries in a lookup table
• GeodeticHeight_g is a value representing geodetic

height
• Latitude_g is a value representing geodetic latitude
• Longitude_a is a value representing longitude
• rty_11 is a value representing altitude
• rty_12 is a value representing angular velocity

Figure 2. Requirements and Assumptions

example.1 This allows the reviewers to check that the for-
malization has not (inadvertently) introduced any conceptual
mismatches. The verbalization is based on an analysis of
the formula structure, and uses text templates to verbalize
the relevant predicates. This allows us to customize the
document’s appearance.

The requirements sections are automatically grouped into
categories which correspond to the applied logic (i.e., the
safety policy [15]); this information can be derived from
the structure of the given formalization of the respective
requirements. Each requirement section in turn starts with
a summary of the pertinent information, i.e., the relevant
variables and the high-level conventions and operations used
by the code (see Section 4.4). The system extracts from the
given formalization the program variables that correspond to
the signals for which the requirement has to hold, and then
identifies the intermediate variables (mostly corresponding
to intermediate signals in the model) that form the chain
between the program locations where the requirement holds
and where it is established. The document separately lists
both the initial and the intermediate variables. However,
the system discards variables for which the formal proof
is below a certain threshold of complexity. This reduces the
lists to those variables to which reviewers need to direct
their attention.

1. For presentation purposes, we converted the excerpted HTML docu-
ment fragments into LATEX, but kept their structure and text; to improve
legibility, we also removed most HTML links, in particular those asso-
ciated with source code references and those introduced by the concept
lexicalization.

Each requirements section then concludes with a series of
subsections that explain why and how each of the relevant
variables meets the requirement (see Section 4.5). The
subsections can contain explanations of fragments of code,
and can refer to the explanations for other variables, which
are cross-linked. Whenever the underlying certification tool
has carried out some analysis using the prover (e.g., that
a code fragment establishes some property), the document
provides links to the corresponding verification conditions
(see Section 4.6).

4.4. Inferred Operations and Conventions

As part of its analysis, AUTOCERT effectively “reverse
engineers” the code, and identifies the potentially over-
lapping fragments that correspond to high-level operations
specified in the model. As a side effect of this analysis,
AUTOCERT also identifies both the high-level mathematical
structures that are used by the operations relevant to the
current requirement, e.g., DCMs and quaternions, and the
lower-level data structures used to represent these, e.g.,
matrices and vectors, including any underlying conventions
that manifest themselves in the lower-level data structures
(e.g., quaternion handedness). This analysis also identifies
cases where several lower-level data structures are used to
represent a high-level concept, such as four scalars repre-
senting a quaternion.

The report contains a concise summary of this infor-
mation, going from the abstract mathematical structures to
the the concrete operations; see Fig. 3 for an example. In
each category, the entries are grouped by sub-categories, so
that for example all extracted information concerning the
representation of DCMs is next to each other. This highlights
potential problems caused by different representations used
in different parts of the model or by different operations
(e.g., the representation of DCMs as 9-vectors and three
3-vectors), and directs the reviewers’ attention to this for
further inspection and clarification.2 Note that here we
choose to list the case where a high-level mathematical
structure’s representation is distributed over several variables
(i.e., eml_fv5, eml_fv6, and eml_fv7), but not to list
all the program variables and what they represent, since the
reuse of variables by optimizing generators makes this aspect
less useful. However, both decisions could easily be changed
by simply changing the schemas.

4.5. Explaining Inferred Program Structure

The backbone of the document is a chain of implications
from the properties of one variable to the properties of one

2. Note that different representations are not necessarily unsafe or un-
wanted (in fact, DCMs and quaternions can represent the same information),
but might nevertheless indicate deeper design problems.



The code relevant to this requirement uses the following data
structures:

• DCMs
• Quaternions

The data structures are represented using the following mathemat-
ical conventions:

• DCMs are represented as 9-vectors.
• DCMs are represented as three 3-vectors.
• The vectors eml_fv5, eml_fv6, and eml_fv7 together

represent a DCM.
• Quaternions are right-handed.

In order to certify this requirement, we concentrate on the following
operations used in the code:

• a coordinate transformation using a DCM from ECI to ECEF
• a coordinate transformation using a DCM from NED to ECEF
• a coordinate transformation using a DCM from NED to Nav
• conversion of a DCM to a quaternion
• conversion of a quaternion to a DCM
• matrix multiplication
• matrix transpose

Figure 3. High-level Conventions

The variable T_NED_to_body1 has a single relevant occurrence
at line 235 in file Attitude.cpp. Frame safety for this occur-
rence requires that T_NED_to_body1 is a DCM representing
a transformation from the NED frame to the body fixed frame
(Body), or, formally, that

has_frame(T_NED_to_body1, dcm(ned, body))

holds. Safety of this use gives rise to three verification conditions:
• Attitude frame 016 0025 (i.e., establish the postcondition at

line 235 (#1))
• Attitude frame 016 0026 (i.e., establish the postcondition at

line 235 (#2))
• Attitude frame 016 0027 (i.e., establish the postcondition at

line 235 (#3))
The frame safety is established at a single location, lines
200 to 203 in file Attitude.cpp by matrix multiplication
of T_nav_to_body1 and Reshape9to3x3columnmajor_o
using Util_Matrix_Multiply, as above. It relies, in turn, on
the frame safety of the following variables:

• T_nav_to_body1
• Reshape9to3x3columnmajor_o

The occurrence of T_NED_to_body1 at line 235 in file
Attitude.cpp is connected to the establishing location at
lines 200 to 203 in file Attitude.cpp by a single path,
which, beginning at this location, runs through the next six
statements, starting with the procedure Util_DCM_to_Quat at
line 205 in file Attitude.cpp, before it calls the procedure
Util_Matrix_Multiply at line 230 in file Attitude.cpp.
This path gives rise to two verification conditions:

• Attitude frame 018 0031 (i.e., establish the postcondition at
line 226 (#1))

• Attitude frame 018 0032 (i.e., establish the postcondition at
line 226 (#2))

Figure 4. Uses and Paths: A Step in the Argument

or more “dependent” variables. The chain starts at those key
variables which appear in the requirement, and continues to

The frame safety of Reshape9to3x3columnmajor_o is
established at a single location, lines 177 to 189 in file
Attitude.cpp by definition as a DCM matrix from NED to
NAV. The correctness of the definition gives rise to two verification
conditions:

• Attitude frame 006 0009 (i.e., establish the postcondition at
line 189 (#1))

• Attitude frame 007 0010 (i.e., establish the precondition at
line 177 (#1))

Figure 5. Definitions

variables in the assumptions or input signals. Fig. 4 shows
one step in this chain.

At this step in the justification, we need to show that
the variable T_NED_to_body1 is a DCM from NED to
the Body frame. First, we show that the information which
has been inferred at this point in the code does indeed give
the variable the requirement properties. Three VCs establish
this (cf. “safety of this use”). Second, the location where
the variable is defined is given, and the correctness of that
definition is established, i.e., that it does define the relevant
form of DCM. In this case, it turns out that that particular
definition has been explained earlier in the document, so a
link is given to the relevant section (cf. “as above”). We
give an example of a definition below. Third, we observe
that this definition – a matrix multiplication – depends, in
turn, on properties of other variables, i.e., the multiplicands,
with which the explanation continues later in the document.
Fourth, we show that the properties of the definition are
sufficient to imply the properties of the use, and that these
properties are preserved along the path connecting the two
locations.

Explaining the definitions. Fig. 5 gives an example where
a DCM has been identified and verified. It gives links to
the appropriate lines in the code and links to the VCs that
demonstrate the correctness of the definition. In this case
there are two VCs: a pre-condition (omitted here), which
states that there exist heading and azimuth variables, and a
post-condition, which states that the constructed matrix does
indeed satisfies the textbook definition of a DCM from Ned
to NAV, with entries equivalent to the appropriate trigono-
metric expressions. Structures that involve loops generally
have considerably more correctness conditions, with VCs
for inner and outer invariants, as well as pre- and post-
conditions.

4.6. Tracing

The provision of traceability links between artifacts is crucial
to providing certification support since things cannot be
understood in isolation. Indeed, the code review document
generated by AUTOCERT can be seen as a structured high-
level overview of the traceability links inferred during ver-



Figure 6. Tracing Between Artifacts

ification. There are both internal links, where items within
the document are linked to each other, and external links to
other artifacts.

The internal links have been described above, and include
links from requirements to safety policies, variables, and
concepts. Fig. 6 illustrates the different kinds of external
tracing provided by AUTOCERT within the larger Matlab
environment. Matlab/RTW already provides bidirectional
linking between models and code. To this, the AUTOCERT
certification browser adds bidirectional linking between code
and VCs. The review documents provide a further layer of
tracing, linking code, VCs, and external documents such
as Matlab block documentation and Wikipedia articles on
domain concepts.

5. Conclusion

We have described the review documentation feature of
AUTOCERT, an autocode certification tool which has been
customized (but is not limited) to the GN&C domain, and
have illustrated its use on code generated by Real-Time
Workshop from a Matlab model of an attitude sub-system.

AUTOCERT automatically generates a high-level narrative
explanation for why the specified requirements follow from
the assumptions and a background domain theory, and
provides hyperlinks between steps of the explanation and the
relevant lines of code, as well as the generated verification
conditions.

The tool is aimed at facilitating code reviews, thus in-
creasing trust in otherwise opaque code generators without
excessive manual V&V effort, and better enabling the use
of automated code generation in safety-critical contexts.

We are currently working to automate linking of inferred
concepts to a mission ontology database. The idea is that by
automatically annotating the code with inferred concepts,
engineers are relieved of this documentation chore. We also
plan to provide links to mission requirements documents and

other relevant project documentation.
Much more can be done to improve the review documents

themselves, such as adding more hierarchy and top-level
summaries, and listing formulas and equations that are
used in the code. In particular, more information could
be gleaned from the proofs, such as the use of constants,
lookup tables, as well as the specific assumptions and axioms
used by individual requirements, and whether there are any
unused assumptions. However, we are already working on
such a proof analysis, and foresee no particular problems
in extending the document generator accordingly. We also
continue to extend the underlying domain theory that is used
to verify the code.

Acknowledgments. Thanks to Allen Dutra for help with the
graphics.

References

[1] E. Denney and S. Trac, “A software safety certification tool
for automatically generated guidance, navigation and control
code,” in IEEE Aerospace Conference Electronic Proceed-
ings. Big Sky, Montana: IEEE, 2008.

[2] K. Czarnecki and U. W. Eisenecker, Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley,
2000.

[3] A. Kleppe, J. Warmer, and W. Bast, MDA Explained. The
Model Driven Architecture: Practice and Promise. Addison-
Wesley, 2003.

[4] MathWorks, “Real-Time Workshop home page,”
http://www.mathworks.com/products/rtw.

[5] I. Stürmer and M. Conrad, “Test suite design for code
generation tools,” in Proceedings of 18th IEEE International
Conference on Automated Software Engineering. IEEE, Oct.
2003, pp. 286–290.

[6] I. Stürmer, D. Weinberg, and M. Conrad, “Overview of
existing safeguarding techniques for automatically generated
code,” SIGSOFT Software Engineering Notes, vol. 30, no. 4,
pp. 1–6, Jul. 2005.

[7] T. Erkkinen, “Production code generation for safety-critical
systems,” MathWorks, Tech. Rep., 2004.

[8] E. Denney and B. Fischer, “A generic annotation inference
algorithm for the safety certification of automatically gen-
erated code,” in Proceedings of the Conference on Genera-
tive Programming and Component Engineering (GPCE ’06).
Portland, Oregon: ACM Press, October 2006, pp. 121–130.

[9] ——, “Generating customized verifiers for automatically gen-
erated code,” in Proceedings of the Conference on Genera-
tive Programming and Component Engineering (GPCE ’08).
Nashville, TN: ACM Press, October 2008, pp. 77–87.

[10] D. A. Vallado, Fundamentals of Astrodynamics and Applica-
tions, 2nd ed., Space Technology Library. Microcosm Press
and Kluwer Academic Publishers, 2001.



[11] J. Diebel, “Representing attitude: Euler angles, unit quater-
nions, and rotation vectors,” Stanford University, Tech. Rep.,
Oct. 2006.

[12] J. B. Kuipers, Quaternions and Rotation Sequences. Prince-
ton University Press, 1999.

[13] E. Denney and B. Fischer, “Explaining verification con-
ditions,” in 12th International Conference on Algebraic
Methodology and Software Technology (AMAST 2008), Ur-
bana, Illinois, July 2008.

[14] E. Reiter and R. Dale, Building Natural Language Generation
Systems. Cambridge University Press, 2000.

[15] E. Denney and B. Fischer, “Correctness of source-level safety
policies,” in Proceedings of FM 2003: Formal Methods,
Lecture Notes in Computer Science, vol. 2805. Pisa, Italy:
Springer, Sep. 2003, pp. 894–913.


